ارزیابی عملکرد شبکۀ عصبی مصنوعی در پیش‌بینی تابش خورشیدی روزانۀ کشور ایران

Authors

Abstract:

Iran has an average of 5.5 KWh per square meter solar radiation and 300 sunny days per year on 90% of the land. Regarding this amount of solar radiation and the necessity for solar potential zoning for better efficiencies, drawing solar potential maps is essential. In this study, the monthly data of 39 synoptic of Iran meteorological stations over years (1991-2000) has been used as the input data to the MATLAB software and artificial neural network (ANN). In the ANN, a multi-layer feed forward model is used. After applying the input data to the network with desired architecture, in output layer the solar radiation is predicted. The solar radiation anticipated by ANN is highly in accordance with meteorological data so that the final correlation coefficient is 0.96, depicting the great accuracy of the data derived from the software. By selecting the predicted data of ANN as input to ArcGIS software, the annual solar potential map of Iran is obtained.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

ارزیابی عملکرد شبکۀ عصبی مصنوعی در پیش بینی تابش خورشیدی روزانۀ کشور ایران

درایران به طور متوسط، 5/5 کیلووات ساعت انرژی خورشیدی بر هر مترمربع از سطح زمین می تابد و 300 روز آفتابی در 90% خاک ایران موجود است. با توجه به این میزان تابش و لزوم آگاهی از پهنه بندی پتانسیل خورشیدی جهت بهره وری مناسب، نیاز به رسم نقشه های پتانسیل خورشیدی است. در این مطالعه، از داده های ماهیانه 10 ساله (1991-2000 میلادی)، موجود 39 ایستگاه سینوپتیک هواشناسی ایران به عنوان داده های ورودی به نرم ...

full text

ارزیابی دقت روش‌های شبکه عصبی مصنوعی و عصبی- فازی در شبیه‌سازی تابش کل خورشیدی

Solar radiation is an important climate parameter which can affect hydrological and meteorological processes. This parameter is a key element in development of solar energy application studies. The purpose of this study is the assessment of artificial intelligence techniques in prediction of solar radiation (Rs) using artificial neural network (ANN) and adaptive neuro-fuzzy inference system (AN...

full text

ارزیابی روش‌های فازی، عصبی و فازی- عصبی در تخمین تابش خورشیدی کشور

تابش خورشیدی در تعیین محل بهینه‌ی نیروگاه‌های خورشیدی و در مطالعات زمین‌شناسی و اکولوژیکی عاملی تأثیرگذار بوده و پارامتر اصلی بسیاری از مدل‌های هواشناسی و هیدرولوژیکی می‌باشد. در ایران 63 ایستگاه تابش‌سنجی موجود است که در قیاس با گستره‌ی کشور تراکم پایینی برای شبکه پایش تابش خورشیدی محسوب می‌شود. در تحقیق حاضر به منظور افزایش تراکم شبکه تابش‌سنجی و در نتیجه پهنه‌بندی دقیق تابش خورشیدی، از اطلاع...

full text

ارزیابی دقت روش های شبکه عصبی مصنوعی و عصبی- فازی در شبیه سازی تابش کل خورشیدی

تابش خورشیدی از پارامترهای مهم اقلیمی است که با بسیاری از فرآیندهای هیدرولوژی و هواشناسی ارتباط مستقیم و تنگاتنگی دارد. این پارامتر از ارکان اساسی توسعه تحقیقات کاربردی انرژی خورشیدی به شمار می رود. مطالعه حاضر به منظور ارزیابی مدل های هوش مصنوعی در پیش بینی مقدار تابش کل خورشیدی رسیده به سطح افقی زمین، انجام گرفت. در این تحقیق شبکه عصبی مصنوعی (ann) و سیستم استنتاج تطبیقی عصبی- فازی (anfis) جه...

full text

ارزیابی روش های فازی، عصبی و فازی- عصبی در تخمین تابش خورشیدی کشور

تابش خورشیدی در تعیین محل بهینه ی نیروگاه های خورشیدی و در مطالعات زمین شناسی و اکولوژیکی عاملی تأثیرگذار بوده و پارامتر اصلی بسیاری از مدل های هواشناسی و هیدرولوژیکی می باشد. در ایران 63 ایستگاه تابش سنجی موجود است که در قیاس با گستره ی کشور تراکم پایینی برای شبکه پایش تابش خورشیدی محسوب می شود. در تحقیق حاضر به منظور افزایش تراکم شبکه تابش سنجی و در نتیجه پهنه بندی دقیق تابش خورشیدی، از اطلاع...

full text

ارزیابی عملکرد شبکۀ عصبی مصنوعی (ANN) و ماشین بردار پشتیبان (SVM) در تخمین مقادیر روزانۀ تبخیر (مطالعۀ موردی: ایستگاه‌های هواشناسی تبریز و مراغه)

تبخیر مؤلفه‏ای اساسی در چرخة هیدرولوژی است و نقش مهمی در مدیریت منابع آب دارد. در این تحقیق عملکرد مدل‏های شبکة عصبی مصنوعی (ANN) و ماشین بردار پشتیبان (SVM) در تخمین تبخیر روزانه ارزیابی شده است. داده‏های روزانة هواشناسی میانگین دما، سرعت باد، فشار هوا، رطوبت نسبی، بارش، دمای نقطة شبنم، و ساعت آفتابی ایستگاه‏های سینوپتیک تبریز و مراغه، به منزلة ورودی مدل‏های ANN و SVM، برای تخمین تبخیر روزانه ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 3

pages  38- 47

publication date 2014-12

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023